[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA AT LOS ANGELES]

The Dissociation Constants of Some Symmetrically Disubstituted Diphenylselenium **Dibromides**

By James D. McCullough and Bruce A. Eckerson

In an earlier investigation, diphenylselenium dibromide was found to dissociate in carbon tetrachloride solution with formation of diphenylselenium and bromine. The value of the dissociation constant $K = [(C_6H_6)_2Se][Br_2]/[(C_6H_6)_2-$ SeBr₂], was determined spectrophotometrically at 26° and found to be 5.02×10^{-4} . The object of the present investigation has been to study the effect of ring substituents on the dissociation of the selenium-bromine bonds. This has been accomplished by measuring the dissociation constants of a number of symmetrically disubstituted diphenylselenium dibromides. It has also been of interest to correlate these equilibrium constants with the generalizations of Hammett² drawn from the ionization constants of substituted benzoic acids and from other systems,

Experimental

Preparation of Materials.—The di-p-methoxy- and di-pphenoxydiphenylselenides were prepared by the method of Alquist and Nelson's which involves reaction of selenium oxychloride with the appropriate phenyl ether. The resulting dichlorides were reduced with powdered zinc to give the selenides. The other selenides were prepared by the method of Leicester and Bergstrom* which makes use of the reaction of potassium selenide with the diazonium salt of the appropriate aniline derivative. The authors are indebted to Mr. Tod Campbell for the synthesis of most of the selenides used in this investigation.

The solid selenides were purified through several re-crystallizations from methanol or a methanol-benzene mixture. The di-p-fluoro- and di-m-chlorodiphenyl selenides as well as the di-m-tolyl selenide are liquids at the usual laboratory temperatures and were accordingly purified through recrystallization of their dibromides. Weighed through recrystallization of their dibromides. Weighed samples of these purified dibromides were then reduced with powdered zinc in carbon tetrachloride to give colorless solutions of the selenides. Dibromides of all of the selenides except those substituted in the ortho position were prepared by addition of a carbon tetrachloride solution of pure bromine to solutions of the selenides in that solvent. In each case the product was recrystallized a number of times from purified carbon tetrachloride containing a small amount of bromine. The ortho substituted selenides form unstable dibromides which exist only in solution.

Bromine and carbon tetrachloride were purified by customary methods.

Procedure.-The dissociation constants were determined spectrophotometrically using a Beckman Photo-electric Quartz Spectrophotometer. The procedure and methods of calculation have been described in a previous publication.1 Since there was no means of the mostating the solutions, their actual temperatures were observed during and at the end of each series of measurements. Variation of laboratory temperature from day to day and the heating effect of the light source caused the solution temperatures to vary from 26 to 32°, although there was little variation during any given set of equilibrium measurements. By making some determinations in a coldroom it was possible to calculate temperature coefficients for three of the dissociation constants and to use these coefficients in correcting all equilibrium constants to 25° for comparison purposes.

Results and Discussion

Molar extinction coefficients for the various dibromides are given in Table I while those for the selenides appear in Table II. The calculated dissociation constants are given in Table III for the actual temperatures at which measurements

TABLE I MOLAR EXTINCTION COEFFICIENTS OF SYMMETRICALLY DISUBSTITUTED DIPHENYLSELENIUM DIBROMIDES

22002			- II II DOLOGICAL DIDAGAIDES			
$\lambda(m\mu)$	o-C1	m-C1	p-Cl	o-CH4	m-CH ₃	
330	7300	4720	7360	6640	6900	
340	6300	4130	6720	6030	5790.	
350	5200	3360	5620	5500	4680	
360	42 00	2650	4500	4660	3690	
370	3400	2010	3420	3810	2880	
380	2700	1520	25 60	3020	2130	
390	2200	1150	1840	2310	1470	
400	1800	867	1340	1730	960	
410	1500	670	940	1330	600	
$\lambda(\mathbf{m}\mu)$	p-CH ₂	p-F	p-Br	p-CH ₂ O	p-C ₆ H ₆ O	
λ(mμ) 330	p-СН: 7310	<i>р</i> -F 6260	∌-Br 7060	p-CH ₂ O		
	-	-		_	p-C ₆ H ₆ O	
330	7310	6260	7060		∌ -С₀Н₃О 9760	
330 340	7310 6190	6260 5490	7060 6120	6730	р -С ₆ H ₁ O 9760 8690	
330 340 350	7310 6190 5010	6260 5490 4590	7060 6120 5200	6730 6350	p-C ₆ H ₆ O 9760 8690 7920	
330 340 350 360	7310 6190 5010 3980	6260 5490 4590 3760	7060 6120 5200 4280	6730 6350 5570	9760 9760 8690 7920 6710	
330 340 350 360 370	7310 6190 5010 3980 3060	6260 5490 4590 3760 2930	7060 6120 5200 4280 3360	6730 6350 5570 4570	р-С₆H₆O97608690792067105390	
330 340 350 360 370 380	7310 6190 5010 3980 3060 2260	6260 5490 4590 3760 2930 2130	7060 6120 5200 4280 3360 2500	6730 6350 5570 4570 3550	p-C₀H₀O976086907920671053904130	

TABLE II

MOLAR EXTINCTION COEFFICIENTS OF SYMMETRICALLY DISUBSTITUTED DIPHENYL SELENIDES

	22002011				
$\lambda(m\mu)$	o-C1	m-C1	p-C1	o-CHs	m-CHe
330	20.0	7.3	29.2	6.9	18.2
340	5.3	1.4	3.7	2.6	3.9
350	2.0	1.1	2.1	2.1	2.4
360	1.4	0.8	1.7	1.7	1.6
370	0.9	0.5	1.2	1.2	1.0
380			0.7	0.7	0.7
390			0.3		
$\lambda(m\mu)$	p-CH:	p-F	p-Br	p-CH ₁ O	p-C ₆ H ₆ O
330	23.7	5.2	31.4		51.5
340	6.8	2.5	5.5	24.3	13.2
35 0	4.2	1.8	2.6	6.0	4.0
360	2.6	1.2	2 .0	2.4	2.7
37 0	1.6	0.7	1.5	1.2	1.9
380	0.8	0.4	1.0	0.7	1.4
39 0		0.2	0.5	0.4	0.9

J. D. McCullough, This Journal, 64, 2672 (1942).
Louis P. Hammett, "Physical Inorganic Chemistry," Chapter VII, McGraw-Hill Book Co., Inc., New York, N. Y., 1940.

⁽³⁾ Alquist and Nelson, This Journal, 53, 4033 (1931).

⁽⁴⁾ Leicester and Bergstrom, ibid., 51, 3587 (1929); of. "Organic Syntheses," Coll. Vol. II.

DISSOCIATION CONSTANTS OF SYMMETRICALLY DISUBSTI-TOTED DIPHENYLSELENIUM DIBROMIDES

Substituent	Т ет р., °С.	K	K(25.0°C.)
None	2 6.0	5.0×10^{-4}	4.8×10^{-4}
o-Cl	3 0.0	1.1×10^{-1}	8.5×10^{-2}
m-Cl	31 . 0	$1.4 imes 10^{-2}$	1.1×10^{-2}
p-Cl	31.5	2.9×10^{-3}	2.1×10^{-3}
	12.2	1.2×10^{-3}	
o-CH ₃	30.0	8.9×10^{-3}	7.0×10^{-3}
m -CH $_3$	29.0	1.7×10^{-4}	1.4×10^{-3}
p-CH ₃	32 .0	5.0×10^{-6}	3.6×10^{-5}
-	${\bf 2.0}$	1.4×10^{-5}	
p -F	29.2	1.5×10^{-3}	1.2×10^{-3}
<i>p</i> −Br	31.4	3.8×10^{-3}	2.8×10^{-3}
	14.8	1.5×10^{-3}	
p-CH ₃ O	30.5	3.5×10^{-6}	2.7×10^{-5}
p-C ₆ H ₅ O	2 7.3	1.2×10^{-4}	1.1×10^{-4}

were made as well as for the comparison temperature, 25°. Dissociation constants for the pchloro, p-bromo and p-methyl compounds are

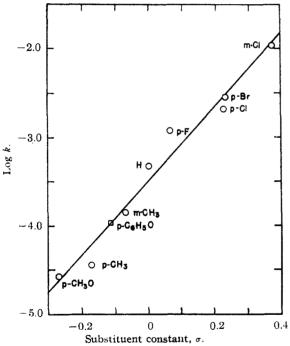


Fig. 1.—Plot of log k against Hammett's substituent constant.

each given for two different temperatures and calculation of their heats of dissociation in solution are thus permitted. The calculated values of this heat effect are 7.8, 9.7 and 8.4 kcal./mole, respectively. The average of these values, 8.6 kcal./mole, was used in making temperature corrections to 25° for all of the dibromides.

Following the method of Hammett, the logarithms of the dissociation constants have been plotted against the substituent constants in Fig. The straight line best representative of the points was located by use of the method of least squares. The slope of this line, designated as ρ , has the value 4.2 and is a measure of the susceptibility of the dissociation to changes in electron density on the selenium atom. The positive value indicates that the selenium-bromine bond is weakened by a lowering of the electron density on the selenium atom. The value found for ρ is quite high, in fact higher than any tabulated by Hammett. It should be borne in mind, however, that the compounds are symmetrically disubstituted and the value for ρ should be taken as half of 4.2 or 2.1. This value still indicates a rather high sensitivity to changes in electron density. The investigation of a series of monosubstituted diphenylselenium dibromides is now in progress.

No substituent constant for the p-phenoxy group could be located in the literature. The point on the line in Fig. 1 corresponding to the observed dissociation constant for di-p-phenoxydiphenylselenium dibromide is indicated by a square. This point corresponds to a substituent

constant of -0.114.

Summary

- Dissociation constants for a number of symmetrically disubstituted diphenylselenium dibromides have been determined and are listed in Table III.
- The heats of dissociation have been calculated for three of the dibromides.
- 3. The dissociation constant has been found to be quite sensitive to changes in electron density about the selenium atom.
- 4. The substituent constants (σ , values) of Hammett have been found to apply quite satisfactorily to this equilibrium,
- 5. Molar extinction coefficients for several dibromides and the corresponding selenides are shown in Tables I and II.

Los Angeles, Calif.

RECEIVED JANUARY 3, 1945